Modern Greek Dekapentasyllable Structure and the Principle of Regulated Asymmetry
Stefano Versace, University of Birmingham, versaster@gmail.com
Nina Topintzi, Universität Leipzig, nina.topintzi@uni-leipzig.de

Aims
- Dekapentasyllable (DPS): the most important indigenous meter of the Modern Greek (MG) poetic tradition. No formal linguistic analysis to date, save for Nespor (1999) who briefly discusses DPS.
- We aim to start filling in this gap!
- Our claim: the well-formedness of DPS is based on the principle of Regulated Asymmetry (RegA) - the strict control over the location of stresses within words, clitics, and φ-Phrases situated at half-line edges that yields systematically asymmetric patterns.

Background & Methods

Data

- Use of the landmark collection of MG folk songs found in Politis (1914). Multiple editions since; we follow the 2009 one
- Our corpus: 4 sections totaling 1237 lines. The sections were: (1) Iotikia 'historical songs' (songs 1-191); (2) Koftika 'songs of the partisans' (songs 20-60); (3) Kanariotika 'sullables' (songs 148-154) and (4) Mioraolia 'mourning songs' (songs 173-206)

On terminology and notation

- Identification of beats is complicated by several factors: a) MG has lexical stress, but lacks 2-stress rhythmic stress (Arvaniti 2007 and refs therin); b) speakers provide additional prominences during performance; however, they are often unsure or allow for variation, c) DPS is taught at school as iambic with alternate stresses. Sometimes, speakers try to regularize the prominences according to this pattern, but it is not always clear whether this is affected by schooling or not.
- Future plan: to clarify the situation through experimentation with multiple lines and testing speakers’ intuitions.
- For now: we assume that the added stresses correspond to the intrinsic rhythmic pattern of DPS, hence we draw our conclusions based on both phonological (i.e. lexical) and metrical (i.e. added for poetic purposes) stresses.

Example-lines are followed by an (X.Y) schema, where X=song number, Y=line number; PZ where P=position and Z=1-15, refers to the syllable position in the line, e.g. P8 = position 8

Prototypical DPS-line
- two half-lines (9,7), with iambic alternation as in 2-4-6-8 / 10-12-14
- Prototypical language is rendered ubiquitous in its meter (an idea that occurs much more common than matching all positions (2)

On Rhythm

1st Half-line / Hemistich
- By far the most common pattern is 2-4-6-8, followed by 1-3-6-8
- 1-3-6-8 is reported in Spatalas (1960) as the most common inversion, but our data do not support this

2nd Half-line / Hemistich
- Much stricter structure with much lesser variation
- Overwhelming majority of lines has 10-12-14, a fair share presents 9-12-14 & 10-11-14 are highly marginal
- Formalic expressions are no real exceptions, since they normally consist of a single q. Also the PP+Noun (4c) can be thought of as a single restructured q
- Since P14 is always the head of q, it falls out that P13-P15 present a stricter configuration

Further elaboration will be needed for the range of patterns in (3), esp. the common P14-15, P9-12 and the unattested with clash on P3-4, or P2-3 if DPS is stressed

Alignment with q-boundaries explains most R-edge features
- The R-edge of each half-line coincides with a Right q-boundary
- But, the L-boundary of the same q is banned from P6-P9 and P13-P15, i.e. no q-break can ever occur after P6 for the 1st half-line, but P13 for the 2nd half-line
- Formularic expressions are no real exceptions, since they normally consist of a single q. Also the PP+Noun (4c) can be thought of as a single restructured q
- Since P14 is always the head of q, it falls out that P13-P15 present a stricter configuration

On Principle of Regulated Asymmetry

Observed Properties

- DPS presents a meter-specific kind of asymmetry between L/R-edges and half-lines
- We claim that these are not accidental, but the outcome of a principle we term Regulated Asymmetry (RegA)
- RegA: refers to the strict control over the location of stresses within words, clitics, and φs situated at half-line edges (i.e. P6, P14), that results in systematically asymmetric patterns
- It involves: (A) alternation of stresses on P6 and P8 (metrical vs. phonological), (B) alternation of half-line length and endings (i.e. variable ending & longer left half-line vs. strict ending & shorter right half-line)

Some concomitant properties of RegA
- (i) Clashes at the beginning of the line are preferable than further away
- (ii) Clashes within the half-lines are infrequent, but clashes across half-lines are admitted
- (iii) Metrical stress inversions are allowed in either half-line
- (iv) The overall stress pattern of the 1st half-line is tied to its R-edge: a 1-3 configuration triggers the presence of a phonological stress on position 6, and of a metrical stress on 8
- (v) Phonological stresses are denser at the right, rather than the left, edge of half-lines

Is RegA based on any linguistic property of MG?
- Maybe: Nespor & Vogel (1989) suggest that MG prefers to resolve lapses, esp. at the R of a phonol. stress, e.g. a φ e φ a φ a φ
- In this view, the addition of a metrical stress on P8 when P6 has phon. stress is straightforward (although the opposite less so)
- Still, main idea: an effect (lapse resolution) that is marginal in the normal language is rendered ubiquitous in its meter (an idea compatible with Hansen & Köpke 1996)

An analysis along the lines of Fabb & Hallé (2008)
- The account is tentative & preliminary; due to space limitations, it aims at capturing only some of the RegA features (i.e. variability & special status of P6, PP fixed character of P14)

Further issues
- Our approach throughout takes performance seriously into consideration (see hold part in column 1 and (3)). But the legitimacy of this move is controversial
- Any alternatives? Your feedback is most welcome!