‘Initial’ geminates initially and medially
Nina Topintzi, UCL, i.topintzi@ucl.ac.uk

Aims

- **Main claim:** if a geminate is underlyingly moraic (Ham 2001) and if moraic onsets exist (Topintzi 2006), then tautosyllabic onset geminates should also be available
- **Empirically verify** this with data from Pattani Malay and Marshallese
- **Advantage:** fills in a logical possibility and also accounts for initial geminates, whose representation has so far been a problem in moraic theory

The theory

- **Standard medial-geminate representation – the ‘flopped structure’** (Hayes 1989):
 \[
 \begin{array}{c}
 \sigma \\
 \mu \\
 \end{array}
 \quad
 \begin{array}{c}
 C \\
 V \\
 \end{array}
 \]
- **Problem:** initial geminates \(\rightarrow\) no coda available \(\rightarrow\) no ‘flopped’ structure available
- **Some alternatives & their problems:**
 - Davis (1999): \(\mu\) is unlinked to higher prosodic structure, thus cannot contribute to weight for e.g. WiMinimality
 - Curtis (2003): resembles representation of unsyllabified consonants, but no evidence for lack of syllabification

A prediction

- **Moraic onset geminates will also be possible medially**
- **Importantly,** they will render the CV syllable heavy, rather than the preceding one as in the flopped CVC.CV
- **Empirical evidence:** Marshallese (see below)

Pattani Malay initial geminates

- Consonant length only contrasts initially; vowel length is not phonemic. In open syllables \(V = \text{long} \), in closed ones \(V = \text{short} \). Exception: \(/i/\equiv\text{always short} \)
- **Stress in non-geminated words (1a):** primary on final \(\sigma \); secondary on remaining ones (1a.i.), unless they include \(/i/\) in which case they are stressless (1a.ii.k)
- **Stress in geminated words (1b):** primary always on first \(\sigma \) (1b.i); secondary stress on remaining syllables
- The data (Yupho 1989, H&G):
 - (1) Geminates and words
 a. **Non-geminated words**
 b. **Geminated words**
 i. [biwibh] ‘fruit’
 j. [biwibh] ‘to bear fruit’ from [bi+wi+bh]
 ii. [jai] ‘road, path’
 j. [jai] ‘to walk’ from [ja+i+al]
 iii. [piat] ‘tooyal’
 i. [piat] ‘to walk’ from [pi+at]
 iv. [sifjad] ‘police’
 j. [sifjad] ‘to the shop’ from [si+if+jad]

A solution

- **Initial geminate as a **moraic** onset** (cf. Hajek and Goedemans 2003 (henceforth H&G))
- **Advantages**
 - Avoids problems of Davis and Curtis
 - **Is consistent with Ham (2001):** a geminate is underlyingly moraic. Thus, the ‘flopped’ structure is not necessary, but achieves better syllabification (cf. CVC.CV vs ‘flopped’ CVC.CV; N.b CVC.CV.geminates). Initially then, single linking is permitted
 - **Is compatible with other data suggestive of moraic onsets,** cf. Pirahã, Karo, Arabela stress or Bella Coola WiMin (Topintzi 2006)
 - Accounts for data such as Truksese WiMin (Davis and Torretta 1998, Muller 1999), Pattani Malay stress (H&G, see below)

Sketch of the analysis

- \(CV(V=1)_1, CV(C=1)_1 \) (because vowel length is not phonologically contrastive), \(CV(V=2)_1 \) (because of the moraic onset geminate)
- **Primary stress** is normally word-final (AlignH&HR), when all syllables are monomoraic. A \(CV(V) \) attracts stress due to WSP >> AlignH&HR
- **Secondary stress** assigned on remaining syllables unless they include \(/i/\). Avoidance of stressed central vowels (*Pi*), cf. quality-sensitive stress (Keniworthoc 1994, de Lacy to appear)
- **However,** WSP >> *Pi*: weight takes priority over quality, e.g. kiiwada
- **Analysis improves** on H&G, who treat \(CV(V=CV=2)_1 \) and make no use of *Pi*. They thus predict \(*[k\ddot{i}_{1}d_{1}b_{1}]_{1} \), instead of \(*[k\ddot{i}_{1}d_{1}b_{1}]_{1} \)
- **Then solution:** prioritize onset weight over nuclear one and introduce ad hoc constraints. **BUT:** this predicts untested systems and employs unwarranted machinery. Both problems avoided in current analysis

Marshallese medial geminates (1)

- Stress and reduplication data support a moraic onset analysis
- Distributive reduplication (Ralik dialect) via consonant doubling (and/or final syllable doubling. The status of the prefix \(y\) is unclear)
- **(2) Root**
 - korap yokoraprap ‘gecko’
 - diylish yiddiylishlah ‘nail’
 - nb yinnubub ‘preemptive’
 - reja yerrejaja ‘(from Engl.)’
- In Ralik, reduplication is by means of consonant doubling. In the Ratak dialect, it is CV-Reduplication, e.g. diylish \(\rightarrow \) didiylishlah. Generalisation: reduplication=\(\pm^1 \mu \). Ralik opts for the absolute minimum, Ratak avoids geminates and prefers supraminimal CV
- A moraic geminate reduplicant wholly syllabified in the same \(\sigma \) captures this straightforwardly

Marshallese medial geminates (2)

- Trisyllabic window for stress (Zewen 1977): (Final) codas are non-moraic
 - If all \(s \)s are light, then stress is on antepenult, e.g. eka’et ‘to judge’
 - Heavy \(s \)s attract stress, e.g. je:di:er ‘commotion, excitement’
 - If \(s \)s are equally heavy/light, leftmost gets stress, e.g. mi:aij ‘to be clear of underwater’
- Stress in words with medial geminates falls on \(CV \) syllable: jibbing ‘morning’; (y)ininim ‘good’
- If syllabification was [jib:un], then stress should be initial under any assumption, namely: a) if codas are not moraic, then leftmost stress, b) if medial codas are moraic, then again leftmost stress, since this hosts the heavy syllable
- Only way to produce correct stress: syllabification is jib:un, i.e. with a moraic onset geminate. Final stress accounted for since the syllable is heavy

Conclusion

- Geminates as moraic onsets solve the long-standing problem of how to represent initial geminates
- Medially, languages can either have \(CV.CV \) geminates or \(CV.CV \) geminates. The latter avoid extra codas at the expense of *Moraic Onset violations. Since most languages ban moraic onsets, it follows that usually medial geminates are heterosyllabic